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PREFACE

An important problem in astrodynamics is that of performing

trajectory corrections in such a way that certain terminal conditions

necessary to the completion of the mission are satisfied. The total

process of determining how the corrections in the trajectory should be

made is called guidance. The guidance problem can be separated into

two parts; the navigation problem and the control problem. Navigation

determines the current values of the position and the velocity of the

vehicle. These values are compared to a stored set of reference (state)

values resulting in a current state error. The control procedure then

determines the changes which must be made in the reference control

program so as to correct the error. Generally, the control process is

executed in such a way that some quantity associated with the control

maneuver will be optimized.

The current investigation considers the control problem for a

low-thrust interplanetary vehicle. Three members of a first order

control scheme family are compared using a mathematical model of the

vehicle. The comparison takes the form of a numerical experiment on

a digital computer as it is impossible at present to undertake a mission

of the type proposed. The investigation seeks to determine from the

numerical data, whether a new first order control scheme introduced

here is superior to existing first order control schemes.

The author wishes to express his gratitude to Dr. B. D. Tapley,

Associate Professor of Aero-Space Engineering and Engineering Mechanics

at The University of Texas for his many helpful suggestions during the
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course of this investigation and to Mr. Dan Colunga and Mr. Gary J.

Lastman for their ideas and advice in all phases of this investigation.

Especially, the author wishes to thank his wife, Madeline Kay, for her

inspiration and understanding.

The author is pleased to acknowledge the support of the National

Aeronautics and Space Administration under Grant NsG-551.

W. T. F.
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A new control scheme based on the first variation of the calculus

of variations and the Weierstrass E-Function is presented. It is found

that this control scheme is a member of a family of first order control

schemes. In general, a member of the control scheme family is char-

acterized by an arbitrary weighting matrix. The choice of the arbitrary

weighting matrix determines the effects of the control scheme on the

system being controlled. The new control scheme, E-Function control,

provides a criterion for choosing the weighting matrix.

A numerical comparison of three members of the family of first

order control schemes is made. Two of the three control schemes are

characterized by arbitrarily chosen constant weighting matrices. The

weighting matrix for the third control scheme is chosen in the manner

prescribed by the E-Function Control scheme.

A general method of predicting the state of a disturbed system in

which not all of the state variables are terminally constrained is intro-

duced. This state prediction method, used in conjunction with each

control scheme, generates data which is used in the numerical corn-
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parison of the control schemes.

The system model used for the control scheme comparison is

a low-thrust vehicle moving along a three-dimensional Earth-Mars

trajectory. A reference trajectory is established and then each

control scheme is forced to correct numerically introduced state

errors.

It is found that the new control scheme provides more satis-

factory control than either of the other two control schemes. It

appears that the new control scheme gives the low-thrust analog of

the impulsive correction characteristic of optimal high-thrust guid-

ance.
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CHAPTER 1

INTRODUC TION

I. I Preliminary Descriptions

In the period from 1970 to 1990, it is expected that unmanned and/or

manned expeditions to Mars will be made. Some of the space vehicles which

will carry out these missions may be propelled by low-thrust ion or plasma

jet propulsion systems. These types of propulsion systems are character-

ized by low fuel consumption rates and continuous thrusting capability at

very low thrust levels. It is probable that the thrust levels which will be

-3
attained will be below I0 pounds of thrust per pound of initial vehicle

weight. This means that the acceleration experienced by the vehicle due to

the thrust (thrust acceleration) will be very small and that the thrust will

be applied over most or all of the mission.

Such an interplanetary mission can be divided into an escape phase in

which the vehicle attains escape velocity relative to the earth, a heliocentric

transfer phase in which the vehicle moves from the vicinity of the Earth to

the vicinity of Mars, and a terminal maneuver phase during which the domi-

nant gravitational attraction is that due to Mars. The thrust requirements

placed on the vehicle by the terminal maneuver phase depend on the mission

objectives and could range from a simple fly-by to orbiting or landing on

Mars. The first phase of the mission (and the third phase in case the

mission objective is an orbit around Mars) can be carried out by either low-

thrust or high-thrust devices. However, preliminary results of a study by

I*.
Lewallen indicate that the perturbations to any low-thrust escape spiral

* Numbers appearing in the text as superscripts indicate references

listed in the Bibliography.
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caused by the Earth's oblateness and the presence of the Moon will be quite

severe. The present study will consider only the second phase. That is,

it will be concerned only with the problem of the evaluation of schemes for

controlling the deviation in the state (position and/or velocity) along a

low-thrust heliocentric transfer from Earth to Mars.

Before a study of such a mission is attempted, a nominal (planned)

optimum reference trajectory will be computed. Several authors 2' 3, 4, 5

have presented studies of optimal trajectories for low-thrust heliocentric

interplanetary missions. The quantity minimized in these studies was

either the fuel consumption or the time integral of the square of the thrust

acceleration. The minimizations were carried out using various optimi-

zation schemes including direct search and gradient methods and both two

and three dimensional models have been used in these studies_

Before an interplanetary transfer is initiated, the reference tra-

jectory and the related time-dependent control settings (control program)

will be stored in an onboard computer. During the course of the mission,

the reference trajectory can be compared to the actual trajectory in order

to detect the presence of any state deviations (state errors). Such de-

viations are to be expected because of control inaccuracies, navigation

errors, errors in the mathematical model used to determine the reference

trajectory, etc. For this study the actual trajectory is assumed to be ex-

plicitly known. Thus, the deviations from the reference trajectory are

known and the problem of controlling the disturbed system is a deter-

ministic control problem.

In order to correct for an error in state (position and/or velocity),

Terms which appear underlined on first usage in the text are de-

fined in Appendix A.
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the reference control program must be changed. For a given state dis-

turbance, an entire program of subsequent control deviations (control

deviation program ) must be provided in order to insure rendezvous with

Mars. Deviations from the reference trajectory can be tolerated during

the early and middle parts of the mission, but the conditions which must

be met at the end of the mission restrict the state deviations which can be

allowed at the terminal point. At the terminal point, rendezvous must

be achieved. This requires that the vehicle arrive at Mars (wherever

Mars is in its orbit) with the same velocity as Mars' velocity. Both the

position and velocity of Mars are time dependent, so early or late arrival

at a point in Mars' orbit cannot be tolerated if the rendezvous conditions

are to be satisfied. If the vehicle gets behind schedule, the rendezvous

point must be shifted further along Mars' path. The satisfaction of rendez-

vous conditions should be a primary objective of any control scheme used

on a mission of this type.

For the occurrence of a state deviation, there exist many possible

control deviation programs which will theoretically insure rendezvous

with the target planet, _i.e. , Mars. Out of the possible control deviation

programs, one must be chosen. The criterion by which a specific control

deviationprogram is selected is that some physical quantity evaluated

along the deviated trajectory must take on an extreme value. This quantity

is referred to as the performance index for the control scheme under con-

sideration. Three similar control schemes evolving from the choice of

three different performance indices are considered in the following in-

vestigation. One of the objectives of the investigation is to compare and

evaluate the adaptability of the control programs resulting from these per-

formance indices to the problem of carrying out the guidance of a low-
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thrust space vehicle.

A control procedure which corrects for known state deviations and

is optimal in some sense is called an optimal deterministic control pro-

cedure. In such a procedure, the control deviations are made in such a

way that rendezvous is insured and simultaneously the performance index

is extremized. In general, the choice of an optimal control procedure is

determined by the choice of the quantity chosen as the performance index.

Once a performance index is chosen, the form of the control deviations can

be determined.

1. Z Previous Studies

A number of studies 6' 7, 8, 9, 10, 11
have been performed in which

linear control procedures have been applied to both linear and nonlinear

systems. Many quantities have been used as performance indices for con-

trol schemes including integrals of quadratic functions of the control de-

viations and/or state deviations, the indices associated with the change in

the performance index used to obtain the reference trajectory, quadratic

functions of the terminal state deviations and/or terminal time deviations.

The study presented here was motivated by the results of an investigation

by Tapley 6 "in which the Lambda Matrix Control scheme 7 and the Extremal

Field Control scheme 8' 9
were compared employing as the mathematical

model a continous thrust vehicle moving in a constant gravitational field.

Due to the performance index chosen and the simplicity of the model used

for the comparison, the control schemes were found to be very similar and

could be made identical with the proper choice of the arbitrary weighting

matrix which appears in the Lambda Matrix Control scheme. It is ex-

pected that for the low-thrust interplanetary vehicle the differences
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between the control schemes will be of a more significant nature. The

major characteristics of these two control schemes are summarized below.

The Lambda Matrix Control scheme (LMC} is a first order control

scheme (based on the first variation} for which the control deviation pro-

gram is determined so as to minimize a weighted quadratic function of the

control deviations while insuring rendezvous with the target planet. There

are two troublesome points associated with the use of this scheme. First,

the weighting matrix used in the LMC scheme is arbitrary. Different

weighting matrices lead to different control deviation programs and cor-

respondingly different state deviations. Furthermore, the scheme pro-

posed in Reference 9 for predicting the state deviation at any time subse-

quent to the initiation of a control program deviation is applicable only

if the final values of all state variables are specified. Some missions

(planetary fly-by, hard planetary impact, destructive interception, etc. )

do not require specification of the terminal values of all state variables.

In planetary fly-by missions, for example, those corrections which insure

a proper terminal miss distance from the planet should be made, but the

use of propellent to correct small errors in the terminal velocity may be

undesirable.

The Extremal Field Control scheme is a second-order scheme (based

on the second variation} for which the control deviation program is deter-

mined so as to produce a deviated trajectory which is optimal in the same

sense as the reference trajectory. For example, if fuel consumption is

minimized along the reference trajectory, then the deviation in fuel con-

sumption is minimized along the perturbed path. A disadvantage of second

order schemes is that they are quite complex and are difficult to implemenf.

Friedlander 10 implements the Lambda Matrix Control for a low-
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thrust two-dimensional Earth-Mars transfer and also presents a study of

the sensitivity of terminal conditions to small errors in the state and/or

control. Another work worthy of note is that of Mitchell I 1 Mitchell per-

forms operations having results somewhat analogous to those of the state

prediction scheme introduced in the present study. Mitchell presents a

method for state prediction explicitly designed for the case in which a

state variable is the performance index. However, the method which is

proposed does not provide an explicit solution to the general state pre-

diction problem created by allowing some of the state variables to be ter-

minally free.

Each of the "above-mentioned studies with the exception of that by
°

7
Bryson has applied some first order control scheme to low-thrust inter-

10 11
planetary flight. The works by Friedlander and Mitchell were con-

cerned also with the effects of navigational errors on the system.

Friedlander used the Lambda Matrix Control scheme with an arbi-

trary weighting matrix to control a two-dimensional Earth-Mars trajec-

tory. Mitchell suggests that Friedlander's control approximates, but does

not attain, optimal first order control. The first order control scheme

developed by Mitchell is very similar to that used by Friedlander (Lambda

Matrix Control} but contains no weighting matrix (or it could be said to use

an identity weighting matrix}. The introduction of the report by Mitchell

contains a very good survey of important studies in the areas of optimi-

zation, trajectory studies, and low-thrust control.

1.3 Scope of the Investigation

In the investigation presented here, a new control scheme similar in

form to the Lambda Matrix Control scheme is presented. The new scheme



is a first order control scheme as is the LMC scheme, but it is derived by

using a performance index similar to that used by the second order Extre-

real Field Control scheme. An advantage of the new scheme is that it re-

places the arbitrary weighting matrix characteristic of the LMC scheme by

a uniquely specified weighting matrix. Furthermore, a state prediction

scheme is presented which is general enough to handle all terminal con-

straint requirements.

In the present study, linear control schemes are used in conjunction

with a nonlinear model. The nonlinear equations of motion for the vehicle

are linearized by expanding them in a Taylorls series about a known ref-

erence trajectory at each point in time. The deviations from this refer-

ence trajectory are assumed to be small enough so that terms of higher

order than the first in the TaylorWs series expansion can be neglected.

A control scheme based on the linearized model will be able to cor-

rect small errors. In general, a state error will be detected while it is

small and can be kept small using the control capabilities of the system.

Thus, the linear control scheme appears to be a satisfactory approxi-

mation for the low-thrust vehicle.

The subsequent study consists of the development of the new control

scheme and its comparison with two other control schemes which belong to

the same first order control scheme family. In order to obtain the effects

of the control scheme on the vehiclets state deviation history, a general

state prediction scheme is developed. This state prediction scheme is de-

signed to handle predictions of state variables which are terrninally free

as well as state variables which are constrained at the terminal point on

the trajectory,

The control schemes are compared by allowing each to correct a
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specified set of state disturbances. Both control and state deviations are

plotted as functions of time and much of the comparison data is taken from

these curves. All state deviations are plotted for each initial state dis-

turbance.

The comparison of the control procedures is made using a three-

dimensional model of the solar system. In the formulation of the problem,

four control variables are used, but two of these are held constant for the

study presented here. The four control quantities are fuel mass-ejection

rate, relative propellent exhaust speed, and two angles defining the thrust

direction relative to a fixed coordinate system. Results are given for the

case where fuel mass-ejection rate and the relative propellent exhaust

speed are held constant. Hence, the two angles which define the orien-

tation of the thrust vector will be regarded as the control variables. Hold-

ing the fuel mass-ejection rate and the relative exhaust speed constant in

effect restricts the mission to one characterized by constant thrust mag-

nitude. The effects of allowing these two quantities to vary should be in-

vestigated in a later study. The mission considered here is a low-thrust,

continously powered transfer from Earth to Mars for which it is required

that the vehicle match position and velocity with Mars at the end of the

mission.

A near optimal control program which produces such a three-dimen-

sional Earth-Mars trajectory along which fuel consumption is approxi-

mately minimized was obtained using the method of steepest descent as

described by Bryson andDenham 12' 13 This nominal control program

and the resulting nominal trajectory are used by the guidance control

schemes as the reference control program and reference trajectory, re-

spectively. Each control scheme is used to correct small state errors in



the vicinity of this reference trajectory. A state perturbation, as used

here, is a suddenly discovered difference between the actual state and the

reference state. The sudden discovery of a state error is simulated in

the subsequent study by mathematical introduction of a state perturbation.

State perturbation vectors, 5xi, are introduced in which the perturbation

.th
in all state variables except the _ state variable are zero and the per-

.th -6
turbation in the 1 state variable is lO units (the actual units depend

on the state variable}.

A typical state perturbation vector is used in the following manner.

The state of the system at the specified time t 1 is assumed to be dis-

placed from the reference state (as defined by the reference trajectory) by

the amount specified by the state perturbation vector. Each control scheme

is used to produce a control deviation program which insures satisfaction

of the terminal conditions. State deviations are predicted for the remain-

der of the mission. For the results presented here, the state perturbations

are assumed to take place at the start of the mission.



CHAPTER 2

FORMULATION OF THE PROBLEM

2. 1 The Mathematical Model

The problem under consideration is the comparison of three members

of a family of optimal deterministic control schemes for correcting devia-

tions in a three-dimensional low-thrust Earth-Mars transfer trajectory.

This chapter describes the mathematical model assumed for the compar-

ison. The equations governing the motion of the vehicle and the trans-

formations between the coordinate systems used are presented. Matrix

notation is used for compactness where it is convenient to do so.

The nominal or reference trajectoryfs a heliocentric transfer from

Earth to Mars. The retarding effect of the Earth on the departing rocket

has been taken into account in the manner suggested by Irving 14 "_n which

the departing vehicle is given the velocity of Earth at the start of the

mission instead of escape velocity relative to the Earth, and then Earth's

gravitational effects are neglected. The details of arrival at Mars will

depend on specific mission requirements. In the study presented here,

the gravitational effects of Mars and the other planets have been neglected

although these effects would have to be included in an actual mission

planning study. It is desirable to neglect these effects, since in a pre-

liminary control comparison study, the mathematical model should be as

realistic as possible without introducing factors which complicate inter-

pretation of the results or which will make computations more tedious than

warranted in a preliminary investigation. Factors omitted in the initial

study can be introduced in subsequent studies in such a manner that their

effects on the results of the preliminary study are apparent.

10
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The geometry of Earth's orbit does not enter into the problem since

only the position and velocity of the Earth at launch are needed for initial

conditions. The position and velocity of Earth at noon on May 9, 1971,

were used as initial conditions.

The orbit of Mars is assumed to be an ellipse with an eccentricity of

0. 093393 lying in a plane which is inclined at an angle of I. 8499 degrees

to the ecliptic plane. The semimajor axis ofthe ellipse is I. 523691 AU

(Astronomincal Units). The ascending node and line of perihelion of the

model_orbit are properly oriented in the coordinate systems used to repre-

sent the actual orientation of Mars' orbit at the time of Earth departure,

May 9, 1971. Values of the constants used in this study, including the

constants dealing with Mars' orbit, are given in Appendix E.

The treatment of Mars' orbit as an ellipse is both desirable and

necessary. A circular orbit in Mars' orbital plane which has its radius

equal to the semimajor axis of Mars' orbit will deviate from the elliptic

orbit by 0. 142 AU (13.2 x l06 miles) at aphelion and at perihelion. Also,

the inclusion of the inclination of Mars' orbit plane is necessary since

this effect will carry Mars over four million miles out of the ecliptic

plane {Earth's orbital plane).

2. Z Equations of Motion

The gravitational force potential for a homogeneous and spherical

body such as the Sun is given by

u -  m/r (Z.l)

where r is the distance between the attracting mass and the position of
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the attracted mass, m, and _ is the gravitational constant of the attract-

ing mass. If G is the Newtonion gravitational constant and M is the

mass of the attracting body, then _ = GM.

The equations of motion for a vehicle of mass m traveling in the

field of influence of an attracting body of mass M are

_%

my = V---U + T + S + D (2.2)

where

v is the vehicle velocity

T is the vehicle thrust vector

S is the solar radiation force

D is the drag force.

For this analysis it is assumed that S and

The thrust vector, T, is given by

D are zero.

T = (2.3)

where

is the propellent mass-ejection rate, and

c is the effective propellent exhaust velocity
relative to the vehicle.

Let the equations of motion be expressed in a heliocentric right-

handed rectangular Cartesian coordinate system. This coordinate system

is oriented so that the x-y plane coincides with the ecliptic plane, the

positive x-axis points along the line of the ascending node of Mars' orbit,

and the positive z-axis coincides with the angular momentum vector of

the Earth with respect to the Sun. This coordinate system is shown in
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Figure i.

Components of the thrust vector in the x-y-z coordinate system are

specified by introducing two angles e and _ as shown in Figure 2. Then,

the thrust components are given by

T
z

T = T cos 0 cos _b
x

T = T cos e sin
Y

= T sin e

.... (z.4)

where T = I "_ I = p I c I

Letting (u, v, w) and (x, y, z) be the velocity components and po-

sition components respectively in the x-y-z coordinate system, the

equations of motion become

d = -_-_ + -_ cos e cosd_
r

= pc
3 _ cos O sin Jd

r

9¢ = _ _z + _c sin O (Z. 5)
3 m

1"

:_ = U

_ = v

_ = w

where r = (x z + yZ + zZ)l/Z and where the dot indicates differentiation

with respect to time.
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FIGURE I. MAJOR COORDINATE SYSTEM ORIENTATION

T x

Tz

FIGURE 2. THRUST VECTOR COMPONENTS
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The mass m of the vehicle at anytime t is given by

t-t

m = m _ f o 13dt (2.6)
o t

O

The differential equation governing the vehicle mass is

= - 13 (z. 71

For generalization of the problem, let the variables which appear

differentiated on the left hand side of Equations (2.5) and (2.. 7) be called

state variables and be denoted by the vector x, where

x 1

x2.

w

x41

!

x6 I

XTJ

U

V

W

x

Y

Z

m

(2.8)

Similarly, let _, c, 0, and qJ be called control variables and be de-

noted by the vector u, where

u 1

uZ

u 3

C

0

I_

(Z. 9)
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Also, let the seven expressions on the right hand sides of Equations (2.5)

and (2.7) be denoted as fl through f7" Thus, the equations of state, i.e.

Equations (2•5) and (2.7), can be expressed in matrix form as

m

x = f (u, x, t) (Z. 10)

where

(') represents d(____)
dt '

x is a 7 x 1 vector of state variables,

-_ is a 7 x I vector of known functions,

u is a 4 x 1 vector of control variables, and

t is the scalar independent variable, _ime.

Z. 3 Notation Conventions

All vectors are denoted by a bar.

unless otherwise indicated. The symbol

All vectors are column vectors

( )T indicates the transpose of

the vector or matrix (). The symbol ( )-1 indicates the inverse of the

square matrix (). All first partial derivatives of scalars with respect

to vectors, are row vectors, i.e.
J --

8H = H-- = [all aH . . . 011 ] (Z. II)
-- x ax 1 8xz ax
ax n

All second partial derivatives of scalars with respect to vectors are ma-

trices formed and denoted in the following manner•



82H

xu

or, in a more compact form,

82H

82H

8u 18Xn

a2H

8u 8x 1ITi

82H

8u 8x
m n

(z. 12)
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aZH _ 8 (SH) T

8uSx 8u ax
-. (2.13)

2.4 Coordinate Systems

The motion of Mars in its orbit must be specified in order to define

the rendezvous condition. This motion can be expressed in terms of a

right-handed Cartesian x"-y"-z" coordinate system in which the x"-y"

plane coincides with the orbital plane of Mars, the positive x"-axis points

along the line of perihelion of Mars, and in which the origin lies at the

center of the Mars orbit ellipse. This coordinate system is shown in

Figure 3. Note that the Sun is at the focus near the periohelion and is not

at the origin of the (x"-y"-z") coordinate system.

If a v&lue of the true anomaly, ¢_m' is given, then a point on the

orbit is determined and the corresponding value of the eccentric anomaly,

F, can be found by use of the relation

F = 2tan-l[_, 1- e tan _'1 (2.14)

where e is the eccentricity of the Mars orbit ellipse.
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FIGURE 3. RENDEZVOUS COORDINATE SYSTEM
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The position (x", y", z") and velocity (u", v", w") of Mars when

it is passing through this point in its orbit is given by

X It = a cos F
rn

y" = b
m

z" = 0

sin F (Z. 15)

and

W I! _- 0

sin 4_m

(e + cos Cm ) (Z.16)

where

a
m

b
m

P

is the semimajor axis of Mars J orbit,

is the semiminor axis of Mars' orbit

(bm = a (I - e)), andm

is the orbital parameter (p = a (I - e2)).
rn

The coordinate transformation from the x"-y"-z" system to the

x-y-z system is most easily seen if the intermediate x'-y'-z' Cartesian

coordinate system is introduced. Let the x'-y' plane coincide with the

x"-y" plane, while the x'-axis coincides with the positive x-axis of the

x-y-z coordinate system (See Figure 4). The origin of the x'-y'-z' co-

ordinate system is the Sun. Thus z' and z" are parallel but distinct.

The transformation of position from the x"-y"-z" coordinate

system to the x'-y'-z' system is given by
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x'

y'

z !

COS to - sin co
In m

sin co cos co 0
n-I m

0 0 I

0
x !,_ ame

yt!

Z !t

(z. 17)

where the translation of origin to the Sun is taken care of by the term

(-ame), and where co is the argument of the perihelion of Marsm

The transformation of velocities from the x"-y"-z" system to the

xt-y'-z ' system does not involve the translation of axes present in the po-

sition transformation and is given by

, 1
I v' = T 1 (z.18)

where T 1 is the 3 x 3 transformation matrix in Equation (2. 17). The

transformation from the x'-y'-z' coordinate system to the x-y-z co-

ordinate system involves no translation for the position components.

Thus, the positions and velocities will transform in exactly the same

manner. The position transformation is as follows

ix] I1 0y = 0 cos i

z_j 0 sin i
0j-sin

COS

[x,]y'

I

L z,

(z.19)

where i is the angle of inclination of Mars' orbit plane measured from

the ecliptic plane. The relation of the x'-y'-z' system to the x-y-z

system is shown in Figure 5.
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The transformation from the x"-y"-z" coordinate system to the

x-y-z coordinate system for positions can now be given by

"x]
!

Y l

I
Z

J

cos co - sin co 0
m m

cos i sin co cos co cos i - sin i
m m

sin i sin v) sin i cos a) cos i
m m

x_l-a e
m

yt!

Z I!

(z. z0)

If the 3 x 3 matrix in Equation (_. Z0) is denoted by T z

transformation from the x"-y"-z" system to the x-y-z

by

then the velocity

system is given

ul io,]
(2.21)

The entire geometrical relationships of the various coordinate systems

are shown in Figure 6.
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MARS' ORBITAL PLANE
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FIGURE 6. COORDINATE SYSTEMS



CHAPTER 3

THE REFERENCE TRAJECTORY

Before discussing the control schemes, a discussion of the mathe-

matical relations necessary for a description of the reference trajectory

will be presented. Consider a dynamic system governed by a set of

diffe rential equations

x = f (x, u, t) (3. 1)

where

x

u

f

t

is an n-vector of state variables,

is an n-vector of control variables,

is an n-vector of derivative functions,

is an independent scalar variable, time.

If the reference trajectory is to be optimal, then a quantity which

is to be maximized or minimized along this trajectory must be chosen.

This quantity acts as an index of merit by means of which the optimal

reference trajectory is chosen from the set of possible reference tra-

jectories. The quantity to be maximized or minimized will be called the

performance index for the optimization process. In general, such a

performance index could consist of the sum of a function of the terminal

values of the state variables and a function which is integrated over the

trajectory. Thus, a general performance index can be defined in the

following manner.

_ tf

V = G (xf, tf} + ft Q (u, x, t) dt (3.2)
0

24
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where to is the initial value of time, tf is the final value of time, and

xf is the final state vector.

It is required, that V be extremized subject to the conditions that

Equations (3. 1) be satisfied along the trajectory and the p terminal con-

straint relations

M (xf, tf) = 0 (3.3)

where M is a p-vector, be satisfied at the terminal point.

Adjoining Equations (3. 1) and (3.3) to (3.2) by the unspecified

Lagrange multiplier vectors k (t) and v, respectively, the quantity to

be extremized becomes

V = (G + _T M)tf + /ft (Q + X'TT - _Tx) dt (3.4)

O

where _ is an n-vector function of time and v- is a p-vector of un-

known constants.

Letting H = Q + _TT + and P = G + _-T_ and integrating the last

term under the integral in Equation (3.4) by parts, we obtain

V = (P _ _Tx)tf + (_Tx)t + ftf (H + kTx) dt (3.5)
o t

O

The functional expression V is a function of x, u, k, v, and t.

The requirement that V be an extremum demands that the first varia-

tion of V, 5_V, be zero while the second variation, 5"V, be positive

+ The variational Hamiltonian, H, for the model used in this

study, and its partial derivatives are given in Appendix B.
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(negative) for a minimum (maximum). Following Bliss 15, the total varia-

tion, &V, of the functional expression, V, is given by

&V = 6'V +_6"V. +_F6'"V. +.. (3.6)

3. 1 The First and Second Variations

The first variation, 5'V, is given by

6tV =
[(P-x - iT) ax + P--v n-_ + (Pt + H) at]t f

+ [iT ax - Hat] t (3.7}
O

+ T) 5x+ H- 5u+ (H_- x T) 5_]dt
U

dition

For an extremumin V, where _x (t o ) = 0 and Z_t °

6'V = 0 requires that along the trajectory

= 0, the con-

--T
X =

(3. s)

--T
k -H--

X

(3.9)

H- = 0

u

(3. lO)

and at the terminal point

= 0 (3.lI)
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(P_)tf = 0 (3. IZ)

(Pt + H)tf = 0 (3. 13)

Equations (3.8) through (3. 13) are necessary conditions which must

be satisfied if V is to be an extremum. Note that Equation (3. 12) is just

Equation (3.3) in a different notation.

The second variation of V is one-half of the first variation of 6'V,

i.e. 6(6'V). From Equations (Z. 7), for fixed At and known Ax (to) ,
_ P O

the second variation can be obtained as follows,

Z5 "V : [AxT [ P--xx Ax+ P--xv AT + (Pxt + Hx)

+ [A_T [P--vx Ax+ P_tAt]]tf + [At [Ptx Ax

+ Ptv- A_ + H--x Ax + H i - A'k + (Ptt + Ht) At] ]tf

+ ftf [Sx T (H-- 6x + H-- 6u + _ 6[ - 6k)xx xu H,.
t
o

+ 6u T (H--ux 6x + H--uu 6u + H_--_ 6[)

- (3. 14)

+ 5[ T (H_xx 5x + H[-_u 5u - 5x)] dt

It is possible to arrange the terms in Equation (3. 14) into other group-

ings and to remove some of the terms under the integral through integration

by parts. This willnot be done as Equation (3. 14) is presented here only

to show the form of 5"V. The second derivatives of the variational
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Hamiltonian found in Equation (3. 14) are given in Appendix C.

As was previously stated, 6"V is positive for a minimum value of

V and negative for a maximum. The use of Equation (3. 14) to check the

sign of 6"V in order to distinguish maxima and minima is a very tedious

task. In most physical problems the nature of the problem and the so-

lution obtained leave no doubt as to the nature of the extremum (maximum

or minimum).

3.2 Reference Trajectory Determination

In order to compare the control schemes as proposed, a reference

trajectory along which the comparison is to be made must be defined. The

reference trajectory is a three-dimensional Earth-Mars transfer which

approximately minimizes fuel consumption and is nearly optimal in this

sense. The conditions which must be satisfied by an optimal trajectory

are given in Equations (3.8) through (3. 10) with the terminal conditions

given by Equations (3. ll) through (3. 13)

The explicit forms of the equations of motion, Equation (2.8), are

given in Equations (2.5) and (2. 7) while the explicit forms of the adjoint

equations, Equations (3.9), are given in Appendix D.

The differential equations given in Equations (3.8) and (3.9) form a

set of Zn simultaneous first order nonlinear differential equations with

half of the boundary conditions specified at the initial point, (i.e., x o)

and half at the final point (i. e. , _(tf) ). A number of iterative numerical

methods for the solution of such systems have been proposed. The

method of steepest descent as proposed by A. E. Bryson and W. F.

Denhaml2., 13 was used in the investigation presented here to obtain the

near optimum control program and trajectory along which the control



schemes were compared. This numerical scheme is outlined in Appen-

dix B.

The performance index used in the study presented here is the value

of the mass at the end of the mission. Thus, Equation (3. Z) becomes

Z9

V = x 7 (tf) (3.15)

where G(xf, tf} = xT(tf) and O(u, x, t) = 0.

The maximization of x 7 (tf) is clearly the same as the minimization

of fuel consumed since the only way that the vehicle loses mass is by ex-

pending fuel.

The equivalence of the performance index expressed in Equation

(3. 15) to that usually used in low-thrust optimization studies;_i.e., mini-

mization of

f_f - to a2dt (3 16)V 1 =
0

(where a is thrust acceleration magnitude,

for a constant propellent mass-ejection rate,

exhaust speed, c.

If a is replaced in Equation (3. 16) by

then m = m - _t. Thus,
O

T/m), can be demonstrated

_, and a constant relative

_c/m, and if _ is constant,

f;f - t _c _t)z= o (m - dt
V1 to o

(3.17)
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If _ and c are constant, Equation (3. 17) can be integrated to obtain

[m]o (3.18)
= _c 1 mfV1 m °

Since mf < m o, the maximum value of mf in Equation (3. 18) will lead

to a minimum of V 1 as was stated.

Thus, in the case that _ and c are constant, the performance in-

dices of Equations (3. 15) and (3. 16) are equivalent. In the cases treated

here, _ and c will be constants.

The near optimum Earth-Mars trajectory (hereafter called the re-

ference trajectory) adopted for the subsequent study departs from Earth

at noon on May 9, 1971 (Julian Date 2441 080.5). The initial conditions

used are given in Appendix D.

1971, after a trip of 184 days.

0. 19872.

plane,

and 9,

Arrival near Mars occurs on November 9,

The mass fraction expended as fuel is

The projection of the reference trajectory on the ecliptic (x-y)

the x-z plane, and the y-z plane are shown in Figures 7, 8,

respectively. The position components as functions of time are

shown in Figure 10, and the corresponding velocity-time relationships

are shown in Figure 11. The control program which produced the refer-

ence trajectory is shown in Figure 12.

From Figure lZ it can be seen that the control variable u 4 under-

goes a change in angle of almost 180 degrees during the interval from 75

to 105 days after the start of the mission. This interval will be called

reversal. In contrast, the control variable u 3 undergoes a change of

only a few degrees during reversal.

Note that the magnitude of u 3 is always quite small. By referring
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to Equations (Z. 5), (Z, 6), and (Z. 7) it can be seen that the main effects of

u 3 (_i. e_., 0) on the system will show up in the out-of-plane state variables

x 3 and x 6 while the main effects of u 4 (_i.e. , d?) will be concentrated in

the in-plane variables x 1, x 2, x 4, and x 5. Thus, errors in x 3

x 6 should be controlled mainly by u 3 and control of errors in

and/or x 5 should be carried out by u 4.

and/or

x 1 , x 2, x 4,
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CHAPTER 4

FIRST ORDER CONTROL

This chapter introduces the first order control schemes which are

compared in the subsequent discussion. A general state prediction scheme

which can handle terminally constrained and terminally free state variables

is introduced to describe the effects of the control schemes on the state of

the system.

Consider a system of n first order differential equations which

govern the system under consideration

x = f (x, u, t) (4. 1)

where the symbols are the same as those defined in Equation (3. 1). For

_#

this system there are given initial conditions x (to) and a reference con-

trol program u (t). Equations (4. 1) can be integrated forward in time

using the given initial conditions and the reference control program to

produce a unique state variable history, x (t), which is called the re-

ference trajectory. The reference trajectory satisfies a set of terminal

conditions which can be expressed as follows:

__ _#

M (xf, tf) = 0 (4.2)

w

where tf is the final time, and where M is a p vector of terminal con-

straint relations (rendezvous conditions).

The general deterministic control problem for such a system can

be stated as follows. If a known state variable error, 6X(tl), is dis-

36
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covered at a known point on the reference trajectory (i.e. , at a known

time tl) , how must the reference control program be changed in order

that the terminal conditions still be met and a performance index asso-

ciated with the control maneuver be extremized? Also, how will the re-

sultant trajectory differ from the reference trajectory?

4. 1 Fundamental Guidance Equation

The consideration of the control of a dynamic system for which an

unperturbed reference solution is known leads to the question of pre-

dicting the future state deviations after a disturbance has occurred. A

general control deviation and state deviation prediction scheme should

work when the number of terminal constraint relations, p, is less than

the number of state variables, n, as well as when p = n. If p < n, it

would be desirable to have the prediction scheme predict all n of the

state deviation histories while the p terminal constraint relations, M,

(Equations {4.2)) determine the control variable deviation program.

The adjoint equations are

_t"
k = -AT_ = - H-- {4.3)

x

where

_)fl * _)fl )*

A =

0f n , 0f n ,

(H_x x)
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,
( ) indicates that the quantities are evaluated along the reference

trajectory and X- is an n-vector of adjoint variables.

The scalar differential equations, the adjoint equations, and terminal

constraint relations for the model treated here are found in Appendix D.

Assuming small perturbations, 5x, Equation (4. 1) can be expanded

in a Taylor's series about the reference trajectory at each point in time to

obtain, to first order in 5x and 5u,

._5"
Sx : AS_+B 6u (4.4)

where 6x is an n-vector of state deviations, 5u is an m-vector of con-

trol deviations, and

B

N

8f I ,

8f

(_--_7)*
1

.

8f 1 ,

(a--j--)
m

8fn ,

(0--j--)
rn

#

= (H_uu)

By premultiplying Equation (4.4} by _-T and adding the product to the

m

transpose of Equation (4.4) postmultiplied by 5x, the following expression

can be obtained.

i (_T_) = xTB 5u (4.S)
dt

Integrating Equation (4.5) between limits t 1 and tf, the Fundamental

Guidance Equation can be determined as follows.
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(_T 6x)tf- = (_T 6x)t I + /ftl _T B 6udt
(4.6)

Equation (4.6) provides a means of combining the state error at time

t 1 with the subsequent control changes in order to predict the state at a

later time, provided that the values of the _'s are known• It will be seen

that a vector of _'s is necessary for each state variable, whether termi-

nally constrained or terminally free.

Let the x vector be partitioned into a p-vector of terminally con-

strained state variables, y, and an (n-p) vector of terminally free state

variables, z, i.e.,

X "-
• • q

Z

(4.7)

n

At times it will be more convenient to use x and at other times y

and z must be used. Several other cases of alternate notation will be

presently introduced for the same reason•

Equations (4.2) consitute p conditions on the terminal values of

the n state variables• In the simplest case, the final time will be fixed

and these p equations will contain only p of the state variables• Thus

the terminal values of these p state variables can be determined directly•

In this case, the Equations (4.2) can be replaced by

y (tf) - yf = 0 (4.8)

where yf is the p vector of values given by solution of Equations (4.2).



40

This replacement, where possible, will make the computation of initial

conditions for the adjoint equations a trivial matter as will be shown later.

If Equations (4.2) involve more than p of the state variables, then

the involved state variables themselves may not be directly constrained,

but there are algebraic relations which must hold between the terminal

values of the state variables involved. In many such cases, Equations

(4. Z) can be manipulated to eliminate all but p of the state variables.

In any case, if more than p state variables are involved in

Equations (4. Z), then for prediction purposes p of the n state variables,

x, must be chosen as the terminally constrained set of state variables, _.

The remaining (n-p) state variables,

terminally constrained state variables,

control deviation program.

z, are terminally free• The p

y, will be used to determine the

In order to obtain the control deviation program and to predict the

state deviation histories of the p terminally constrained state variables,

y, we start with the Fundamental Guidance Equation in the form of

Equation (4.6). For each of the terminally constrained state variables,

the conditions

must hold at the final time, tf.

For the (n-p) terminally free state variables,

(4.9)

k.. = 6.. (i = p ÷ 1, n) (4. 10)
U 13 (j = 1, n)

where 6.. is the Kronecker delta function (6.. = 1 when i = j; 6.. = 0
2J 1J U

when i /j).
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If an (n x n) matrix A is formed from n solutions [_1' _2' _3'

• . _n] to Equation (4.3) with conditions given at tf by Equations (4.9)

and (4. 10), then an expanded form of Equation (4.6) can be written as

(A6x)tf = (A6x) t + /f A6udt

1 t 1

(4. II)

where

n-vectors•

AT
= [[1' kZ .......... in ] and the [.'s are column

l

Thus, for example if n = 7, and p z the matrix A T
, = _, at tf

(made up of the n (n x 1) vectors, [) has the form

A T (tf) =

8M1 0Mz 0M3 0M4 0 0 0

8x 1 ax 1 0x 1 ax 1

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

OM1 OMz 8M3 8M4
0 0 1

8x 7 Ox 7 8x 7 Ox 7

- (4. IZ)



4Z

Note that if C T is defined as the left-most (n x p) matrix in A T ,

i_e., those elements involving M, then the values of AM, are given

to first order by

AM (C -- = (C -- + /f C B 6udt (4. 13)

= 6x)tf 6x)t 1 t I

If, as was mentioned above, Equation (4.2) involves only p of the

state variables, and the final time is fixed, then Equation (4.9) is equiva-

lent to Equation (4.2). Using Equation (4.9) instead of Equation (4.2), the

matrix A T at the final time, tf, is given by

AT(tf) = I, the (n x n) identity matrix. (4. 14)

The rendezvous conditions set up for the model used in the present study

fall into this category. These conditions are given in Appendix D. If each

n x 1 vectors of k's in AT(tf) is integrated backward in timeof the from

tf to to, a C matrix and a A matrix can be obtained at each point in

time. Then the control deviation program and the resulting state de-

viations can be found from Equation (4. 13) and the appropriate control de-

viation scheme.

4.2 Lambda Matrix Control Scheme

The control deviation program for the Lambda Matrix Control

scheme is obtained by minimizing a quadratic function of the control

variable deviations subject to the constraints that Equations (4. Z) must

hold at the final time, tf. Thus, the quantity V is minimized where
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t
v = ff 6KTw 6Kdt (4.15)

t 1

and where the m x m matrix W (t) is a known arbitrary symmetric pos-

itive definite weighting matrix, while requiring that the following p

equations hold.

A_ = AM {x,(tf), tf) = 0 (4. 16)

If Equations (4. 13) are adjoined to Equations (4. 16) with a set of

constant Lagrange multipliers, v, then

V m_

tf
[6u T W 6u --T

ft I -v CBSu]dt

-T
+ v JAM- C(tl) 6x (tl) ]

(4. 17)

Consideration of a variation in

tremum with respect to an arbitrary

c onditi on

5u and requiring that V be an ex-

6(6u}, i.e. 6'V = 0, leads to the

61V = 0 =ftf [25uT
t

l

W - _TcB] 5(5u) dt (4. 18)

Then, for an arbitrary variation, 6(6u), Equation (4. 18) requires that

= 1 W-1 (t) B T (t) C T (t)5u (t) Z (4. 19)

The unknown multipliers _- can be evaluated by substituting Equation
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(4. 19) into Equation (4. 13) and solving for _.

m

2J -1 it 1) [_M - C itl) 8x itl) ] (4.2o)

where

tf

J(tl) = ft CBW I B T C T dt
I

Finally, after substituting Equation (4.20) into Equation (4. 19), the

are given by (CSx)t f and from Equation (4. 11),

8u (t) = w-lit) B T (t) C T it) j-I itl) [_

- C (tl) 8x (tl) ]

(4.21)

AM

i4.22)

This form is identical to that given by Bryson and Denham in Reference 9

except for notation.

4. B The E-Function Control Scheme

A new control scheme is developed by requiring that along the per-

turbed trajectory, the deviation in the value of the original performance

index associated with the reference trajectory be a minimum. That is,

the control deviation program seeks to optimize the perturbed trajectory

by minimizing the change in the performance index associated with the re-

ference trajectory. Since the change in the original performance index

caused by a deviation in the reference control program can be approxi-

mated by an integral form of the Weierstrass E-Function, the term

E-Function Control (EC) is applied to the resulting control procedure. If
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the reference trajectory was determined by requiring that some mission

oriented performance index be a minimum, then the change in this per-

formance index associated with following some trajectory other than the

reference trajectory will be an increase in its value. This increase can

be approximated by

tf _, _, _
(V - V*) = f E (x , x , x, t) dt (4.23)

t
1

where E is the Weierstrass E-function (See Page 148,

The E-function is defined as

Reference 16).

E = L ix , x, t) - L (x , x , t) - (-_-_* ix - x*) (4.24)

_x

For the system under consideration,

L ix, x, t) = H ix, u, t) - _Tx (4.25)

where H = _TT.

As before, the starred quantities represent evaluation on the ref-

erence trajectory and the nonstarred quantities refer to evaluation on any

other trajectory. A necessary condition for a minimum value of the

original performance index is that E be nonnegative over the interval

to --< t _< tf. This insures that the integral of Equation (4.23) will be

nonnegative.

Now consider the effect on the E-function of changing the control at

a point along the reference trajectory. Note that from Equation {2.5) a

_.t"

variation in the control will immediately affect the vector x, {actually
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only the first three elements of this vector) and will affect the vector x

only after a finite time has elapsed. Therefore, it will be assumed in the

expansion of Equation (4.24) that a variation in the control will be

_t"

accompanied only by a variation in the vector x, and not by a variation

m

in the vector x.

In view of Equation (4.25), Equation (4.24) reduces to

E = H ( , u, t}- H (x--*, u , t) (4.26)

Expanding the first term on the right hand side of Equation (4. Z6)

in a Taylor's series about the reference trajectory at each point in time,

the following expression can be obtained.

H (x, u, t) = H (x, u t) + H- 5u + 6uTH m 6u
' U _ UU

(4.27)

Noting that along an optimal reference trajectory,

(4.26) reduces to

H-- = O, Equation
u

E _' 1 6u T H--* 5u> 0 (4.28)
-- _ UU --

Substituting this approximate form for the E-function into Equation (4. Z3),

the function which is to be minimized along the perturbed path becomes

z (v - v*) =_ ftf 6u T Hw* Su dt (4.29)
uu

t
1



The factor 2 which multiplies

dropped since minimization of

(v - v*).

(v-v)

z(v - v )

in Equations (4.29) can be

is equivalent to minimizing

Note that along the perturbed path a weighted quadratic function of

the control deviations is to be minimized in exactly the same manner as

in the Lambda Matrix Control scheme. The only difference being that

here the weighting matrix is not arbitrary but is uniquely specified as

H-- . Thus if the weighting matrix in the LMC scheme is chosen as
UU

H ---* then the E-function Control scheme and the LMC scheme are
uu

identical, and the control for the EC scheme is given in Equation (4.22).

In order to derive the control for the EC scheme, one need only replace

the right hand side of Equation (4. 15) by the right hand side of Equation

(4.29) and carry out the operations as given in Equations (4. 16) through

(4. zz).
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4.4 State Deviation Prediction

In order to predict the state deviations which result from a per-

turbation of the reference trajectory and the subsequent effect of a con-

trol deviation program, a general time t can be substituted for tf in

Equation (4. 11). Solving for 6x (t) and manipulating the limits on the

integral terms, the following expression can be obtained.

tf

6x (t) = A -I (t) [A(t I) 5x (tl) + ft AB 6u dt

I
(4.30)
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Equation (4.32) is the basic prediction equation. In order to use it

with a specific control scheme, the control deviations produced by the

specific control scheme must be substituted into the integrals in Equation

(4.30).

Now substitute Equation (4.22) into Equation (4.30) to obtain for a

general time, t,

-1
5x (t) = A

It) [A(tl)5x(tl)+ [f]i ABW-1BTcT dt]

• j-1 (tl) [ZXM - C (tl) 5x (tl) ] [ /tfABW-1BTcTdt]

• j-1 (tl) [aM - C (t 1) 5x (t 1) ]] 14.31)

or letting

qJ (t) = ftf ABW-1 BTc T dt (4.3Z)
t

then Equation (4.31) becomes

5x It) = A -1 (t) [A(t 1) 5x (tl) + [qJ (t 1) - qJ (t)]

• j-1 [__ c (t l) _x (tl)] ] (4.33)

Now by defining a_ (t, tl) = _ (t) - q_ (tl), Equation (4.33) can be re-

duced to the following form.
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5x (t) = A -1 (t) [A(tl) + A02 (t, tl) j-1 (tl) C (tl) ] 5x (tl)

- A -1 (t) A_ (t, t 1) j-1 (tl) AM (4.34)

And finally, in the special case where AM = 0, 5x (t) is given by

6x (t) = A -1 (t) [A(tl) + A_ (t, tl) j-1 (tl) C (tl) ] 6x (tl)

(4.35)

Equation (4. 34) or (4.35) is the basic state prediction scheme for the

family of control schemes, while Equation (4.22) gives the required con-

trol variable programs.

Note that in case the final time and all of the terminal values of the

state variables are constrained, (i.e., n = p), A(t) and C(t) are identical

and

tf - 1 BTAT
_b (t) = J (t) =f ABW dt (4.36)

t

In addition, if AM = 0, Equation (4.34) becomes

5x (t) = A -1 (t) J (t) j-1 (tl) A(tl ) 5x (tl) (4.37)

This is precisely the form obtained by Friedlander in Reference 2.

The state deviation prediction scheme described in Reference 7 as

a part of LMC is a limited special case of the more general state deviation
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prediction scheme which is given by Equation (4.35). The state prediction

scheme described in Reference 7 is as follows. Consider that an error

has been discovered at t 1 and is being corrected. Equation (4. Z2)

generates a unique control deviation for each time after t The state
1"

deviation after t 1 will be a function of the original state error and the

subsequent control deviation. At a time t > tl, the state deviations are

measured. If AM = 0 and no state errors have been introduced after tl,

then the control deviations generated by Equations (4.22) using the state

error at t 1 should be the same as the control deviations generated using

the state deviations measured at t. Thus, from Equation (4.2Z),

j-1 (t) C (t) 6x it) = j-I (tl) C (tl) 6x (tl) (4.38)

In order to predict 5x (t), Reference 9 suggests that both sides of

Equation (4.38) now be multiplied by cTit) and the matrix [C T it) j-1 it)

C (t)] be inverted. This inversion cannot be carried out unless n = p

because [C T (t) j-1 (t) C (t)] is an n x n matrix of rank p where p<n.

Thus, this state prediction scheme cannot be used unless the number of

terminal constraint equations, p, equals the number of state variables, n.

4.5 A Family of First Order Control Schemes

Let any time-dependent sequence of weighting matrices, W

iintroduced in Equation (4. 15)), be called a weighting function. The fact

that a change in the arbitrary weighting matrix associated with the LMC

scheme changes the subsequent control and state deviations means that in

reality a change in the weighting function W it) is a change of control

law. Thus, the first order control schemes having control deviations of
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the form given in Equation (4.22) and state deviations of the form given in

Equation (4.36) form a family of control schemes. The various members

of this family can be identified by their weighting functions W (t).

Since the LMC scheme is derived with an arbitrary choice of

weighting function, it is not restricted to control about an optimal ref-

erence trajectory. The LMC scheme requires only that the reference

trajectory, the reference control program, and the initial and terminal

states be known.

In contrast, the development leading to the EC scheme with its

unique specification of the weighting function in Equation (4.29) is based

on the assumption that the reference trajectory is optimal in addition to

being well known. The weighting function is found to be H--uu' the

matrix of second partial derivatives of the variational Hamiltonian

evaluated along the optimal reference trajectory.

The use of a control scheme from this family of control schemes

requires the selection of a weighting function, W (t). The choice of

W(t) determines the control law. If the reference trajectory is optimal,

then a good choice for W(t) would be that given by the E-Function Control

scheme, i.e. W(t) = H-- (t) If however, the reference trajectory is
-- -- ' UU

only approximately optimal (the usual case when the reference trajectory

is determined using a gradient method of optimization}, or is not optimal

at all, what choice should be made for the weighting function?

In the case of the approximately optimal reference trajectory, it

seems likely that the weighting function specified by the E-Function Con-

trol scheme would again be desirable. If this choice is rejected, then the

user is again faced with the problem of choosing a weighting function

arbitrarily from an infinite number of possible weighting functions. In any
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case, it would seem that a weighting function which reflects the changing

sensitivities of the vehicle system to he controls would be desirable.

#
This again suggests W(t) = H-- (t) .uu

It should be noted here that the use of W(t) = H-- implies thatuu

some optimization process has been used in the generation of the re-

ference trajectory since the Lagrange multipliers, k (t} (See Equation

(3.4)), associated with the optimal trajectory are needed in order to

c omput e H--uu In general, the reference trajectory will be at least

a crude approximation to an optimal trajectory. Thus, k (t) along the

#
reference path will be known and H m

uu
can be used as the weighting

functi on.

In the unusual case where control about a trajectory which is not

even approximately optimal is desired, the _ (t)'s obtainable are not the

#
Lagrange multipliers associated with an optimal process and H--uu

should not be used as the weighting function. In this case an arbitrary

choice of W(t) is necessary.

4. 6 Approximately Optimal Trajectories

Let us qualitatvely consider the case of the approximately optimal

reference trajectory. Since the reference trajectory is not truly optimal,

V _, _,there exist nearby trajectories along which V < (for V approxi-

mately minimal). Thus, it is possible that a trajectory on which a

disturbance is being corrected could be more nearly optimal than the

approximately optimal reference trajectory itself.

Assume that a control problem is stated in which the reference tra-

jectory is known to be approximately optimal. Assume further that the

#
weighting function W 3 = H--uu is known to be positive definite on some
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intervals of the reference trajectory and negative definite in others.

(This cannot happen on a true optimal trajectory since ]Equation (4.29)

must hold there}. Thus, W 3 is singular at the points between intervals

of positive and negative definiteness. Singularity of W 3 implies unbounded

control in the neighborhood of a singular point (See Equation (4.22)).

Let us assume that in regions near a singularity W 3 is redefined

as the m x m identity matrix. This means that the weighting function

#

W 3 = H-- has been modified and has becomeuu

W 3 H_uu for ] det (H_uu*= ) ] > e, and

W 3 = I for I det (Hu-uu $) [ <_ E (4.39}

where [ det ( } I means the absolute value of the determinant of (),

I is the m x m identity matrix, and

E is an arbitrary small positive number.

No stipulations are made as to the continuity of the elements of W 3.

The redefined W 3 has no singular points but still has intervals in which

it is negative definite.

The following development is entirely heuristic and cannot be backed

by more than intuition. It is presented here only as an indication of a

possible area of future investigation.

Assume that although the reference trajectory is only nearly optimal,

the approximation for changes in the performance index given in Equation

(4. Z9) can still be used. Further, let us assume that the redefined W 3

of Equation (4.39} is positive definite for t < t < t 1 and is negative de-
O _

finite for t 1 < t < tf. The integral of Equation (4.29) can be broken into
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t
&P1 = f 1 5u T W3

t
o

D

5u dt> 0

tf
ZXP 2 6u T W 3

= ftl

where AP 1 + AP 2 = (V- V ).

Three cases are possible, i.e.,

D

5u dt < 0 (4.40)

I _P1 I > I _Pz I ,

I _Pll = I _Pzl. a_d

I AP 1 I < I AP2 I (4.41)

In the first and second cases, the disturbed trajectory is no better than

the reference trajectory, but under the assumption of this section, the

possibility of obtaining the third case implies that it might be possible

@
to obtain a disturbed trajectory for which V < V and thus improve the

trajectory using the EC scheme.



CHAPTER 5

NUMERICAL PERFORMANCE EVALUATION

Numerical results used in the evaluation of the comparative guidance

capabilities of three members of the first order control family (Section

4.5) were obtained using a Control Data Corporation 1604 digital computer.

The reference trajectory along which the control schemes were compared

is the approximately optimal three-dimensional low-thrust Earth-Mars

trajectory described in Chapter 3.

5. 1 Numerical Implementation

The reference trajectory was obtained using the steepest descent

optimization procedure described in Appendix B. Next, the first order

control schemes were programmed in such a manner that any member of

the first order control family could be used by selecting the weighting

function W (t).

The accuracy of the computations involved in obtaining the reference

trajectory and applying the control schemes is highly dependent on the

processes of numerical matrix inversion and numerical integration. The

accuracy of the routines which carry out these numerical operations was

checked separately using problems having known solutions. After the

routines were inserted into the program and actual problem data was

being used, the matrix inversion was again checked by multiplying the

matrices to be inverted by the inverse. The matrix inversions were

carried out in full double precision. Also, the dependent variables in the

integrations were carried in double precision in order to control round off

error.

55
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The numerical integrations were carried out using a fifth order

Runge-Kutta numerical integration scheme 17, The integration interval

size was chosen in the following manner for both the steepest descent

process and for the control scheme simulation programs. First, an ar-

bitrary interval size, h, was chosen and a trial integration was made.

Then a second trial integration using an interval size of h/2 was made.

The data for the two trials was then compared. This data consisted of

tabulated values of the integrated functions. The following criterion was

used to determine the suitability of a particular interval size, h.

Each entry in each column of data obtained using the interval size

h was compared with the corresponding entry obtained using h/2. In

each column (consisting of the values of a single variable) the entry

having the largest absolute value was found and the decimal place defined

by the fourth significant digit in this number was chosen as the critical

decimal place for that column. A difference of more than one unit in

this decimal place between any two corresponding numbers (comparing

data for interval sizes of h and h/2) for any variable was sufficient to

disqualify h as an acceptable interval size. If h was disqualified, then

h/2 became the new interval size and was checked against h/4. This

process was repeated until an acceptable interval size was found.

The interval chosen was h = 0.25 days. The range of integration

was 184 days. The accuracy of the integrals obtained using this interval

size compared very well with check data obtained using both fifth order

18
and ninth order Adams numerical integration schemes

The first process which was undertaken after obtaining the reference

trajectory was the determination of the adjoint solutions. These were ob-

tained as a part of the control scheme program.
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5. Z Adjoint Solutions

Six of the seven sets of adjoint solutions obtained when Equations

(4. 3) are integrated backward in time from tf to t with starting con-
O

ditions given by Equations (4. 14) are shown in Figures 13 through 18.

Each quantity plotted, kij (t), is a time dependent sensitivity coefficient

.th
which indicates the sensitivity of the terminal value of the 1 state

.th
variable to an uncorrected error in the j state variable at timer t, i.e.,

ax. (tf)1

kij = Ox. it) (5. l)
J

A complete discussion of the adjoint solutions is outside the scope

of this study. However, several facts about the adjoint solutions will be

noted. For additional information concerning the properties of adjoint

solutions, the reader is referred to References 2 and 19.

The maximum absolute value of kij it) represents the maximum

sensitivity of x. (tf) to a unit error in x.. The time t at which such a1 j

maximum for k.. occurs denotes that time during the mission at which
12

a unit error in x. would most affect x. (tf). For example, the maximum2 1

absolute value of k15 (See Figure 13) occurs approximately 47 days after

the beginning of the mission. Thus, x 1. is most sensitive to a disturb-

ance in x 5 around 47 days after the start of the mission.

The sensitivities of the first six state variables (velocity and position

components) to an error in the seventh state variable show abrupt changes

in slope beginning approximately 80 days after the start of the mission.

It is at this time that the vehicle begins to turn around in order to start

deceleration so that rendezvous with Mars can be achieved. Large changes

in the sensitivities of the kinematic state variables (velocity and position
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components) during the thrust reversal period are to be expected since

changes in thrust angle are accompanied by corresponding changes in

thrust acceleration direction. These thrust acceleration direction changes

in turn affect the velocity and position variables.

The seventh set of adjoint solutions, _i.e., those obtained by setting

k7i (tf) = 0 (i = 1, , 6)

k77 (tf) = 1 (5.2)

are not plotted because this set of solutions is constant. For a constant

mass ejection rate, Ul, the mass cannot be disturbed by errors in po-

sition or velocity. In addition, for fixed final time, tf, an error in the

mass itself cannot be changed in a system characterized by a constant

mass ejection rate.

5.3 Numerical Comparisons

As discussed in Chapter 4, three members of the first order control

scheme family were chosen for comparison. Two members are char-

acterized by arbitrarily chosen constant weighting functions while the

third has its weighting function given uniquely as is described in the

section on E-Function control (Section 4.3). The three weighting functions

used are

w I (t)

"1

0

0

(5.3)
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w z (t) =- ]
10 0

0 1 (5.4)

and

W 3 (t) = H--*uu (t)

(32H) * .02H )*

Ou3 2 (8--_38u 4

O2H • (a2H)*

aU3aU4)

(5.5)

Weighting function W 2 was chosen after the data for W I had been

obtained. It was noted that when using WI to correct errors in x 1, x 2,

x 4, and x 5 (the velocity and position components in the x-y plane), the

resulting deviations in x 3 and x 6 (the velocity and position in the z-

direction) were disproportionately large. For example, the maximum de-

viation in x 6 was larger than the maximum deviation in x 4 even when

x 4 was the disturbed variable. It was apparent that with the equal weight-

ing of Wl, the control variable u 3

correcting errors in the x-y plane.

chosen in order that the influence of

For WZ, however,

an effect when x 3 or x 6

to be better than the W Z

was exerting too much influence in

The weighting function W_ was

u 3 be decreased.

it was noted that the control u 4 had too great

was found to be in error. Thus, W 1 proved

weighting function when errors were in x 1, x2,

x 4, or x5, but W 2 was better when the errors Were in x 3 and x 6.

Note that since the reference trajectory is approximately optimal,

the weighting function W 3 should give a more desirable control than W 1
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or W2. It should be noted at this point, however, that the weighting

function W3 = Hw as defined in Section (4.3) is not positive definiteuu

along the entire reference trajectory. This results from the fact that

the reference trajectory is only approximately optimal and was obtained

using a gradient technique. It was found that the determinant of W B

changed signs three times along the reference trajectory.

The matrix W 3 was used despite the lack of positive definite-

ness in order to see what type of control would be produced. Inversion

of the matrix W 3 was not attempted near the points where the deter-

minant changed signs.
|

In the following discussion the three control schemes are denoted

by their respective weighting matrices W1, W2, and W B. The three

control schemes are compared by numerically simulating the perform-

ance of each scheme in correcting typical state disturbances. In the

simulated control maneuvers shown here, it is assumed that the errors

occurred at the start of the mission.

Data are presented for the case where the mass ejection rate, u 1'

and the relative exhaust speed, u2, are held constant. The only actual

control quantities are the angles u 3 and u 4.

Each control scheme is used to correct seven disturbances, i.e.,

an error in the initial value of each of the seven state variables. The mag-

nitudes of the errors are 10 -6 AU day for the velocity variables, 10 -6AU

for the position variables, and 10 -6 times the initial vehicle mass for the

seventh state variable. Only one variable was disturbed at a time. Hence,

the values of the resulting curves at any time, t, can be interpreted as
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elements of a state transition matrix _ (t, tl), i.e.,

6x (t) = 4_ (t, t 1) 6x (t 1) (5.6)

State variable deviation histories and the control deviation programs which

produced them are given in Figures 19 through 25. Each figure consists

of eight parts which display three curves each. The transpose of the initial

state deviation vector for each of Figures 19 through 25 is shown below.

For Figure 19,

6x T = [(10-6AU/Day} 0 0 0 0 0 0] {5.7)

For Figure 20,

6x T = [ 0 (10-6AU/Day) 0 0 0 0 0] (5.8)

For Figure 21,

5x T = [ 0 0 (10-6AU/Day) 0 0 0 0] (5.9}

For Figure ZZ,

6x T = [ 0 0 0 (10 -6 AU) 0 0 0] (5. I0)
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For Figure Z3,

5xT = [ o o o o (10-6AUI o 0 ] (5.11)

For Figure 24,

8xT -- [ o o o o o (_o-6AU) o ] (5.1z)

And, for Figure 25,

5x T = [ 0 0 0 0 0 0 (10 -6m o) ] (5. 13)

where m is the value of the mass of the vehicle at the start of the
O

mission.

The first six parts of Figures 19 through 25, parts (a} through {f},

are the time-dependent responses of the state variables Xl through x 6

to an initial error and the subsequent control deviation. The seventh and

eighth part of each figure, parts (g} and (h}, are the control deviation pro-

grams 5u S and 5u 4. Each of the eight parts of a figure contains three

curves. These three curves show the responses given to the state disturb-

ance by the three control schemes W 1, W z, and W 3.

For example, Figure ZI shows the response of each of the control

schemes to the state disturbance given in Equation (5.9}. Parts (g} and

(h) show the control deviation programs 5u 3 (t) and 6u 4 (t}. Part (a)

shows 6x 1, the deviation in the variable x 1, resulting from the initial

state error defined by Equation (5.9) and the subsequent control deviation

programs shown in Figures Z1 (g) and 21 (h}. Part (f) exhibits the



66

behavior of 5x 6 for the same initial error and resulting control deviations.

Table I below summarizes the data contained in parts (a) through

(h) of any of Figures 19 through 25

Table I

Summary of Data Displayed for a Typical Figure

from Figure 19 through Figure 25

Part Plots Contained

(a) 5x 1 (t) for W1, W 2, and W 3

(b) 5x 2 (t) for W 1, W 2, and W 3

(c) 6x 3 (t) for W 1, W Z, and W 3

(d) 5x 4 (t) for Wl, W 2, and W 3

(e) 6x 5 (t) for W l, W 2, and W 3

(f) 6x 6 (t) for W1, W z, and W 3

(g) 6u 3 (t) for W 1, W z, and W 3

(h) 5u 4 (t) for W 1, W z, and W 3

With u I held constant, an error in the seventh state variable, x7,

leads to a constant state deviation history for 5x 7. Also, an error in any

of the first six state variables cannot cause a state deviation in x 7. Note,

however, that an error in x 7 will lead to deviations in all other state

variables since then the reference control program will not lead to saris-
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faction of the terminal conditions. The reason for this is that a constant

thrust magnitude applied to a body whose mass differs from the reference

value will not produce the reference acceleration.

The state deviation histories for the variable x 7 are constant and

However, if u I were variable, then the state deviation

would no longer be constant and 5x 7 (t) would have to

are not plotted.

histories 5x 7 (t)

be considered.

In the comparison presented here,

x 6 are terminally constrained while x 7

state deviations produced by an error in

the state variables x 1 through

is terminally free. Thus, the

x 7 are expected to differ from

those produced by an error in any other state variable. When an error in

x 7 occurs, the control schemes do not attempt to correct it. Instead,

the other state variables are adjusted in order to insure rendezvous for

the vehicle with its altered mass.

In contrast, state errors in variables x 1 through x 6 are corrected

by the control schemes. An error in any one of the first six (terminally

constrained) state variables initiates a correction maneuver while an

error in the seventh (terminally free) state variable initates a control

maneuver which insures rendezvous but does not correct the original state

error. Thus, the control maneuver for a deviation in a terminally con-

strained state variable should differ from the control maneuver for an

error in a terminally free state variable.

5.4 Discussion of Results

For an error in any of the variables, the 5x 1 and

[i.e., parts (a) and (b) of Figures 19 through 25] for W

hibit erratic behavior between 75 and 105 days.

5x 2 curves

1 and W 2 ex-

During this time, {the
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thrust reversal period} the control variable

of almost 180 degrees (See Figure 12). During reversal the

[i--e., parts (h} of Figures 19 through 25] for W 1 and W 2

changes also. The curves for W3, however, show 5Xl, 5x2,

u 4 swings through an angle

5u 4 curves

show rapid

and 5u 4

as smooth functions during reversal. This behavior is not unexpected

since the elements of W 3 are related to the sensitivity of the system to

changes in the control variables. On the other hand, the elements of

W 1 and W 2 are constant. The smoothness of the state deviation curves

for W 3 during this period indicates that the use of W 3 leads to an

adjustment in the control deviations to account for the changes in the

system's sensitivity to the control deviation. The constant weighting

functions W 1 and W 2 allow no such adjustment.

Comparisons of the data for W 1 and W 2 show that W 2 produces

state deviations of smaller amplitudes for 5x 1, 5x 2, 5x 4, and 5x 5 than

does W 1 when the error occurs in one of the variables Xl, x2, x 4, or

x 5 (Figures 19, 20, 22, 23) but the 6x 3 and 5x 6 curves for W Z have

larger amplitudes than for W 1. When x 3 or x 6 is the variable in

which the error occurs (Figures 21 and 24), the 5x 3 and 5x 6 are smaller

in amplitude for W 1 than for W 2. This implies that W 2 is a better

weighting function than W 1 when the error is in x 1, x 2, x4, or x5,

but if x 3 or x 6 is disturbed, then W 1 is better than W 2.

In general, for W1, W2, and W3, errors in velocity result in

much larger state deviations than do disturbances in position and mass.

This effect is illustrated in Figures 13 through 18 and it has been observed

in previous control studies of this type 2, 3, 8.

The control deviations characteristic of W 1 and W 2 are larger in

every case than those of W 3. The state deviation curves indicate that
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W 1 and W2 overcorrect and produce oscillatory state deviations while

W3 produces much smaller but more effective corrections. If W 1 or

Wz is used, it appears that the control scheme corrects the current state

error without compensating for the effect of this correction on the other

state variables.

The W3 control scheme corrects velocity errors in the following

manner. Rapid velocity changes are introduced which quickly bring the

vehicle's velocity to a value very near the characteristic value for the

reference trajectory. Meanwhile, the position variables have been

allowed to drift slightly away from the reference values. The small

velocity deviation which remains is then used to slowly correct the small

position error which occurred during the correction of the major portion

of the velocity error.

A position error is controlled by the W3 scheme as follows.

Rapid velocity changes occur which bring the value of the disturbed po-

sition variable closer to its reference value. The velocity variables

then return to values very near the reference values and again slowly

correct the remaining position variable errors.

Thus, the use of W3 as the weighting function gives a state deviation

history very different from that given by W 1 and W2. The W3 state

deviation history seems to be the low-thrust equivalent of the impulsive

corrections characteristic of optimal high-thrust ballistic guidance.

Comparison of Figure 25 with Figures 19 through 24 show that the

control maneuver executed in the case of an error in a terminally free

state variable (x7) does not differ significantly in character from the

control maneuvers for erros in terminally constrained state variables.

This result is surprising if one notes that in the case of Figure 25, the
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control schemes are physically unable to correct the error in x7 while

in Figures 19 through 24, it is shown that the main action of the control

scheme is to correct the original state errors.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6. I Summary

In the investigation presented here, a new control scheme is pre-

sented. The scheme, referred to as the E-Function Control (EC) is

similar in form to the Lambda Matrix Control scheme (LMC). The EC

scheme is a first order scheme as is the LMC scheme, but it is derived

by using a performance index similar to that used with the second order

Extremal Field Control scheme. The EC scheme replaces the arbitrary

weighting function characteristic of the LMC scheme with a uniquely

determined matrix. Furthermore, a general state prediction procedure

is presented which is able to handle terminally free state variables as

well as state variables which are terminally constrained.

The EC scheme is compared nurnerically with two LMC schemes

(two different arbitrary weighting functions) on a three-dimensional

Earth-Mars low-thrust transfer trajectory. The numerical results show

that where applicable, the EC scheme is superior to the LMC scheme

characterized by an arbitrary weighting function.

The limitations of the EC scheme are discussed and suggestions for

extensions of the study are made. The applicability of the EC scheme to

control about a near optimal reference trajectory is discussed also.

6.2 Conclusions

1. The user of the LMC scheme,

to base his choice of weighting function,

given no criterion on which

W (t), would generally

choose a weighting function which is convenient and easy to use.
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Thus, since the choice of weighting function determines the control

law, the usual LMC scheme leads to a control deviation program

which is a function of the user's idea of ease and convenience. It

would seem that any control-sensitive, non-arbitrary weighting

function, however approximate, would yield a more desirable control

law than an arbitrary weighting function. The results obtained

using W 3 tend to substantiate this idea. Even though for the non-

optimal reference trajectory, W 3 fails to meet one of the require-

ments placed on the weighting function, i.e., that it be positive de-

finite over the entire trajectory, the control deviations produced by

W 3 tend to null the state deviations much more quickly than do the

control deviations produced by W 1 and W 2.

2. A constant weighting function, such as W 1 or W2, which

does not respond to the changing sensitivities of the system to the

controls leads to a control deviation program which tends to over-

correct state errors and produce oscillatory state deviation

histories. The weighting function W3, derived using the EC scheme,

does provide for control-scheme response to changing sensitivities

of the system to the controls and produces state deviation histories

which do not oscillate after a short correction period which occurs

immediately after the discovery of a state error.

3. Despite the fact that W 3 is not positive definite over the

entire trajectory, use of the W 3 matrix as the weighting function

seems to produce a low-thrust equivalent of the impulsive corrections

characteristic of optimal high-thrust guidance. It is not claimed

that W 3 = H -$ yields the ultimate in first order control but it
UU

seems clear that this choice of the weighting function for the model
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used here gives definite improvement over the entirely arbitrary

constant weighting functions W 1 and W 2. It is probable that

W 3 = H-- is a better weighting function than any constantuu

weighting function.

4. As has been found in all previous control studies of this

type, errors in velocity are more serious than errors in position.

The resulting state deviations in all variables are larger.

6.3 Recommendations for Further Study

It is recommended that the study be extended to the following areas:

1. First, atruly optimal reference trajectory should be ob-

tained and the control method developed here should be retested.

The optimal reference trajectory should be obtained by using a

method such as that proposed by Jazwinski 20 in order that H-- = 0
u

and H-- be positive definite along the reference trajectory
uu

(necessary conditions for a true optimum). Use of the Jazwinski

scheme requires that H-- be positive definite and requires that
uu

H-- = 0 along each attempt to obtain the optimal trajectory. An
u

iterative process is used to obtain the initial values of the Lagrange

multipliers required to satisfy the terminal constraint relations.

2. It is suggested that a second order scheme, such as the

Extremal Field Control scheme be compared with the EC scheme

presented here.

3. It is also suggested that the possibility of using the E-

Function Control scheme presented here to improve a nonoptimal

reference trajectory be investigated. This might be accomplished

by requiring the control scheme to guide the vehicle to a mid-course
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point slightly away from the reference path and then requiring the

scheme to correct the resulting error.

4. The possiblity of developing the ideas of Section 4.6

should be investigated. Here, it is suggested that given an approxi-

mately optimum reference trajectory, the EC scheme might be

used to generate a more nearly optimal trajectory.
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APPENDIX A

Definitions of Terms

C ont r ol - the process of regulating the state of the vehicle

(system) by varying the parameters of the pro-

pulsion system.

Control deviation program - a sequence of control changes consisting of a

control change vector at each point on the tra-

jectory following the initiation of a change in the

reference control program.

Control program - a unique specification of the values for all of the

control variables at each point in time over the

span of the mission.

Control scheme (guidance control scheme) - as used in this report, a

method for calculating changes in the control

variables to correct for deviations from the ref-

erence trajectory.

Control variables - quantities which regulate the effect of the pro-

pulsion system on the vehicle state (the control

variables appear as undifferentiated time-de-

pendent parameters in the differential equations

of state).

Reference control program - the control program which, along with the

reference initial state, will produce the re-

ference trajectory.

- the values of the state variables at any point inReference state

104
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time which result from the use of the reference

initial state and the reference control program.

Reference trajectory - the values of position and velocity at each point

in time along the planned mission trajectory

(the kinematic portion of the reference state at

each point).

State deviation - the difference between the actual value of a state

variable and its reference value at a point in

time.

State deviation prediction - refers to the process of predicting the state

deviations which will occur due to the use of a

control deviation program.

State equations - the seven differential equations which describe

the behavior of the state variables,

State perturbation - a disturbance in state or difference between the

actual and reference states.

State variables - the seven quantities which represent the physical

condition of the vehicle.

Terminally constrained state variable - a state variable which has its

value at the end of the mission explicitly or im-

plicitly specified by mission requirements.

Terminally free state variable - a state variable which has its value un-

restricted at the end of the mission.



APPENDIX B

Th e Steepest Descent Procedure

The steepest descent (or ascent) procedure in the calculus of

variations is a numerical procedure for finding solutions of optimum pro-

gramming problems for a system governed by a set of ordinary differen-

tial equations. Certain independent variables, called the control variables,

must be programmed in such a way that certain terminal conditions are

satisfied and a quantity called the performance index is extremized. The

steepest descent procedure determines an approximation to the optimum

control variable program. The accuracy of the approximation depends

on the number of iterations over which the process is applied, the close-

ness of the original guess of the control program, and the degree of non-

linearity of the differential equations which govern the system.

The problems to which the steepest descent procedure is applied

are, in the classical calculus of variation formulation, two-point boundary

value problems for a set of ordinary nonlinear differential equations. The

steepest descent procedure provides a systematic iterative procedure for

the solution of such problems which takes advantage of the capabilities

of the modern high-speed computer.

The problem is basically the one formulated in Chapter Z. Given a

system governed by a set of n simultaneous first order nonlinear differ-

ential equations

.I-

x = f (u, x, t) (B. 1)

with initial conditions
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w

x (t o) = _o (B. z)

subject to p terminal constraint relations

{x {tf), tf) = 0 (B. 3)

find the control program u (t) such that a performance index

/V = G(xf, tf) + f Q (u,
t

o

x, t) dt (B. 4)

is extremized. Following Chapter 2, the Euler-Lagrange equations

-T

k = - H-- (B. 5)
x

must be satisfied along the extremal path. The end conditions for (B. 5)

are

_T (tf) = Px] (B. 6)

tf

-T--
where P = G + v M.

Equations (B. 1) and (B. 5) with conditions (B.2) and (B.6) form a

two-point boundary value problem for the Zn differential equations in

x and k.

In general, the p vector of constant multipliers is unknown. Also,

if the final time is not constant, some method of eliminating it must be

used or it must be added to the list of unknown quantities.
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Choose any of the p terminal constraint relations as a condition

to determine the time at which the integration will be stopped, i.e., the
m

final time tf. Let this relation be called K. Thus the stopping condition

m

K (xf, tf), = 0 (B.7)

determines the final time tf and is satisfied for all nominal trajectories.

The remaining p - 1 terminal constraint relations and their correspond-

ing v's take the place of the p terminal constraint relations in (B. 6)

since the v corresponding to K is indeterminate because K (tf) = 0.

In order to avoid having to know the (p - l)k's at tf, let

--T
×G (tf) - C {x (B.s)

tf

--T
k_ = Mxl (B. 9)

tf

--T
k K = Kxl (B. I0)

tf

where [G is an n vector, k_ is an n x (p- 1) matrix of (p- 1) n

vectors and _K is an n vector. The quantities _G' _M' and _K are

vectors of influence functions or sensitivity coefficient functions which

satisfy the adjoint equations given in Equation (B. 5). Then, to first order,

at tf,

6G = --TkG 5x (B. 1I)

--T
6M = k_ 6x (B. IZ)
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-T -

5K = k K 5x (B. 13)

The numerical procedure for obtaining the control program which pro-

duces an optimal trajectory is as follows: Choose a nominal control

program u (t) which will lead to eventual satisfaction of the stopping

condition (B. 7). Integrate the Equation (B. l) forward in time until (B. 7)

is satisfied. Since the k's are not known at this point, Equation (B. 5)

cannot be integrated back in time from tf to t with the end conditionsO

(B. 6). The Fundamental Guidance Equation (4.6) states that for small

deviations away from the nominal trajectory,

tf --T B6u dt (B. 14)
g'G S_itf (_ _x)to + f t xG

O

([___ - --T tf --T BSu dt (B 15)= (x_ 6x) + ft6xlt f to k_ .
o

--T 6x)t f T + ftf --T B6_ dt (B 16)(k K = ([ 5x) to t kK
O

The total changes in G, M, and K at the final time tf are given by

zxG = 6G + G at (B. 17)

AM = 6M + M At (B.18)

AK = 6K + K At (B. 19)

Substituting (B. 1 1) through (B. 13) into (B. 14) through (B. 16) and then

eliminating 6G, 5M, and 6K with Equation (B. 17) through (B. 19),
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we obtain

where

tf --T B6udt +
AG = ft kG

O

tf
m f -TA M = k_ B 5udt +

t
O

tf -T BSudt +
AK = ft kK

O

• 8G
G = (-_-) + (aGT),_ etc.

8x

• + (_T 5x)t (t3.20)
(Gnt)tf o

"-- + (_T 5x)t (B. 21}
(MAt)tf o

(KAt)tf + (k--KT5X)to (B. 22)

Since K = 0 determines tf, AK = 0

optimal trajectory• Solving (B. 22) for

and (B. 21) we get

on each approximation to the

At and eliminating At from (B. 20)

AG /f --T BSudt= kGK
t

O

tf -T B 5udt
= ft kMK

O

--T
+ (XGK 5x) t (B. 23)

O

--T
+ {kMK 6x)t (t3.24)

O

where

kGK = k'G - G k'K' and
K

"...z_

K

m

The k's are influence functions as was noted in the discussion of the

fundamental guidance equation. The steepest ascent computation scheme

seeks to find the control deviation program which maximizes AG for

specified values of AM, AK, and AR Z, where AR Z is defined by



111

the following integral

tf
ARZ = ft Su T (t)W (t) Su it} dt

O

(B. Z5)

where W (t) is an arbitrary symmetric m x m weighting matrix. In

general, Equation (B. 3) is not satisfied along a nominal path, so values

AM for AM (usually some percentage of the needed AM) are chosenc

to bring the nominal solution closer to satisfying the terminal constraints.

Choosing AG as the performance index, adjoining (B. 21) and (B. 25)

to it with Lagrange multipliers _ and _ respectively, the procedure of

Chapter Z can be followed to obtain

- -1 - -1 (B. Z6)v = 2_ IMM A_ IMM IMG

/, T 1I

Z_t +. /-GG
- IMG IMM IMG

IMM A_

where

D m

A_ = AM
c

--T
kMK (t o) 5x (to)

tf

Iij = ft _TK BW-1BTSK dt
O

The quantities i and j are dummy indices which take on values M and

G. The proper values for the 5u(t) can be shown to be



6_(t) : + 1 W-IBT - -1 ]
2_ [%K- kMK IMM IMG

- - -1 AF (B.28)+ W IBTkMK IMM

112

where all functions on the right are evaluated at time t and the + (-) sign

is to be used if AG is to be increased (decreased).

Note that if the AM asked for is too large, then the denominator
c

in (B. 27) can become negative. If this happens, then AM must be
c

scaled down until the denominator becomes positive.

The 6u (t) at each point is added to the u (t) at each point to

generate a new nominal control program. This new nominal control pro-

gram is then fed back into the scheme to generate a new nominal trajectory,

etc. The process is repeated until no further significant improvement in

the nominal trajectory can be economically obtained.

A more complete discussion of the method can be found in Ref-

erences 12 and 13.



APPENDIX C

Partial Derivatives of the Variational Hamiltonian

Since in the problem considered here Q = O,

Hamiltonian, H = Q + _T f is given by

the variatonal

_x 4 UlU Z

H = kI ( r3 + x 7 cos u 3
cos u 4 )

_x 5 UlU 2

+ k2 ( r3 + x7 cos u 3
sin u 4 )

_x 6 UlU z

+ k3 ( ----3r + x7 sin u3 )
+ k4x 1 + k5x z

+ k6x 3 - k7u I (c.i)

where f- is defined in Equations (1.5} and (1.7).

The partial derivatives of H with respect to the control vector,

u, H u, are given by

H-- = [ OH OH OH OHu ou--q ou-q (c.z)

where

OH u2

8u I x7 (kI cos u 3 cos u4 + kZ cos u 3 sin u 4 + k3 sin u3)=k 7

OH Ul

Ou z x 7
(kI cos u 3 cos u 4 + kZ cos u 3 sin u 4 + k 3 sin u3)
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_H UlU2

au 3 x 7
( -k I sin u 3 cos u 4 - k z sinu 3 sin u4 + k 3 cos u3)

8H ulUz

8u 4 x 7
( -k I cos u3 sin u4 + kz cos u 3 cos u 4)

The second partial derivatives of H with respect to the control

vector form a symmetric 4 x 4 matrix and are given by

82H 82H 8ZH

0 8u 18u2 8u 18u3 8u I8u4

8Z H 82H
0

8u 18u 3 8uZSu 4

symmetric _ 82H 82H

8u32 8u 3 au 4

82H

8u4 2

(c.3)

where

OZH

8ZH

8UlSU 3

02H
8H /u

(SH) T

8a
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32H

82H

8UzSU 4

82H

2

8u 3

82H Ul,U2

= --(k I sin u 3 sin u4 - k2 sin u3 cos u4)
8u38u 4 x 7

82H UlU 2

8u42 = x7 (k I cos u 3 cos u4 + k2 cos u 3 sinu4)

The partial derivatives of H with respect to the state variables,

H x, are given by

H-- = [all aH
x . 0x7] (C. 4)

where

8H

8x---7 = k4

8H

8x---z = k5

OH

Ox--7 = k6

OH -5 (3x42
8x---4 = _r [ k 1 _ r2) + 3kzX4X 5 + 3k 3x4x6]



ll6

_H i_r-5 [3klx5x4 + k Z (3x5z - r z) + 3k3XsX6]

8H = i_r-5 [3klx6x4 + 3kzX6X5 + k
8x6

3 (3x6 2 - rz) ]

8H

The second partial derivatives of H

variables, H E, form a symmetric 7 x 7

with respect to the state

matrix and are given by

0 0

0 0

0 0

0 0

0 0

o/°
o/o

DZH

0

0

8ZH

syrnmetric_

0 0

o
0

0

0

0

0

(c.5)
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where, letting S = klX 4 + kzx 5 + k3x 6,

8ZH

_x4 2

-_7 [3rz (zx:x4 + s) - :Sx4 z s]
r

8ZH

ax4x 5
[3r z (klX 5 + kzX4 ) - 15x4x 5 S]

r

82H

%x4x 6
[3r z (klX 6 + k3x 4) -7

r

15x4x6S]

82 H

2
8x 5

__ [3r z (ZXzX 5 + S) - 15x5 z S]

8ZH

8x5x 6
__7 [3r z (k2x 6 + k3x5 ) - 15x5x 6 S]
r

8ZH = 4 [3rz (Zk3x6 + S) - 15x6 _ S]

8ZH 8H /x 8H u2

: --
8x 7

The mixed second partial derivatives of H with respect to

_, form a 4 x 7 matrix given by

u and



118

where

_

UX

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

82H _H
- - (B--G-_-.)/x7 (i = I.... 41

8XTBU i 1

82 H

8x 78u 1

82H

8x78u 2

82H

8x78u 3

82H

8x78u 4
(c.6)

The partial derivatives of H with respect to _, H E, is a 7 vector

given

HE = Ill f2 f3 f4 f5 f6 f7 ]

where the f. = x. and are given by Equations (2.5) and (2.7).
1 1

The mixed second partial derivatives of H with respect to u and

k, H_--_, forms a 4 x 7 matrix given by
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HEy

82H 32H 82H

aklSU 1 ak28u I 8k38u I

82H 82H 82H

8klSU 2 8kzaU 2 8k38u 2

82H 82H 82H

8klSU 3 8kzSu 3 8k38u 3

82H 82H

8klSU 4 8kzSU 4
0

0

0

0

0 0

0 0

where

(c. 7)

82H u2

-- cos u 3 cos u 4x 7

82H u2

-- cos u 3 sin u 4
x 7

82H u2

-- sin u 3
x 7

82H 82H u 1

8--kiSuI ) u2
(i = 1, Z, 3)



IZ0

82H UlU 2

0klOU3 x7 sin u 3 cos u 4

82H UlU 2

= sin u 3 sin u 4
0k z8u 3 x 7

a2H UlU 2

= COS 113
ak3au 3 x7

82H UlU 2

= cos u 3 sin u 4
ak i_u4 x7

82H UlU 2

= cos u3 cos u4
8k28u 4 x 7

k,

The mixed second partial derivatives of

H_--f, form a 7 x 7 matrix given by

H with respect to x and
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where

v--

0

0

_2 H

8k I Dx4

\

0

0

a2H

0

I 1

0 1

0 0 0

°1o

oxzax 4

0 0 0 1 0

a2H

2ax 5

32H
0 0 0 0

I

symmetric

a2H

aklaX 7

0 0 0

0 0

a2H a2H [ak2ax7 ak3ax7 0
0 0

0

0

(c.8)

82H

ak.ax.
1 1

(3x.2 _ r 2)
1

r

(i = 1, z, 3)

a2H 3_
s (xi+ 3) (xj)

r

for (i, j) taking on the values
(2, 4), (3, 4) and (3, 5).

aZH

8kiax 7
(i = 1, z, 3)
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If the control variables u I and u2 are held constant, the partials

of H with respect to the control, state, and adjoint variables are given

by the following equations:

H-u = [ _aH aa__4] (C. 9)

where the elements are defined in Equations (C. Z),

m

uu

F
, 82H 82H

8u3Z Ou38u4

= !

i a2H 02Hau38u 4 0u4 2
(c.1o)

where the elements are defined in Equations (C. 3),

S_

UX

0 0 0 0 0

0 0 0 0 0

82H

0 8x78u3

aZH
0

ax 7 au 4
(c.1i)

where the elements are defined in Equations (C. 6)

oZH 02H oZH

OklSU 3 OkzOu 3 Ok3Ou 3

82H 82H

8k 18u4 akzSu 4
0

0 0 0 0

0 0 0 0

(c. IZ)
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where the elements are defined in Equations (C. 7}.

The matrices Hx, H_, H_, and H_-_ are not changed.



APPENDIX D

Equation Summary

1. Equations of state [ x = f (u, x, t) ]

-_x 4 UlU 2

_1 = 3 + x7 cos u 3 cos u 4
r

-_x 5 UlU z

_2 = r3 + x7 cos u 3 sin u 4

-_x 6 UlU 2

_3 = 3 + x7 sin u 3
r

x4 = Xl

x5 = x2

x6 = x3

x7 = -Ul

z 1/2
where r = (x4 + x52 + x62)

2. Performance Index for reference trajectory.

G = - x 7 (tf) - to be minimized
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3. Adjoint equations (--" = - H x)

k I = k 4

k2 = k5

k 3 = k 6

X4 : -_ [k 1 (3x4 2
r

_ rz) + 3kzX5X4 + 3k3x6x 4]

• kz(3X5 zx5 [3× += 5 lX4X5
r

- rZ)+3k3x6x5 ]

k 6 = -_
r

[3klX4X 6 + 3kzX5X6 + k3 (3x62 - r2)]

UlU 2

k7 = 2 [k I cos u3 cos u4 + k z cos u3 sin u4

x7

+ % sin u 3]

4. Terminal Constraint Relations for Control Schemes (M = 0}

M 1 = x 1 (tf) - u m (tf) = 0

M z = x z (tf) - Vm (tf) = 0

M 3 = x 3 (tf) - Wm (tf) = 0

M 4 = x 4 (tf) - x m (tf) = 0



IZ6

M 5 = x 5 (tf) = Ym (tf) = 0

M 6 = x 6 (tf) - Zm (tf) = 0

where {u m, v m, win} and (Xrn' Ym'

velocity vector and position vector at

Zm) are the components of Mars'

tf, respectively.



APPENDIX E

CONSTANTS

. Conversion factors

a. Distance 1 AU = 9. 283 x 107 miles

= 1.494 x 1011 meters

= 4.902 x 1011 feet

b. Velocity 1 AU/Day = 3. 868 x 106 miles/hr.

= 5. 673 x 106 ft/sec

Z. Mars Orbital Data

a. Semimajor axis for orbit

b. Eccentricity

c. Argument of ascending node

d. Angle of incliniation

e. Argument of perihelion

f. Eccentric anomaly (t o) F
In

a 1.523691AU
m

e 0.093393

0 (for coordin_es used}

i 0.032289 rad.
m

5.8541335 rad.
m

4.250885 rad.

3. Earth Position and Velocity at 12:00 noon,

Position

a. x = x 4 =

b. y = x 5 =

C. Z = X 6 =

Velocity

a. u = X l =

b. v = x2 =

May 9, 1971, (t o )

-0.99980 AU

-2
2. 009 x 10 AU

0.0 AU

-3.455906 x 10 -4 AU/day

-1.719868 x I0 -2 AU/day

127



128

c. w = x 3 = 0.0 AU/day

o Vehicle thrust constants

a. Mass flow rate

b. Exhaust Velocity

5. Solar Gravitational Constant

0. 00108 vehicle mass/day

0. 045365 AU/day

= 2.96007536 x I0
-4 AU 3

DAY 2
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